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3.3.1 ビオ–サバール (Biot–Savart)の法則

ビオ–サバール (Biot–Savart)の法則
定常電流密度 iが作る磁場

B(r) = µ0

4π

∫ i(r ′)× (r − r ′)

|r − r ′|3
dV ′ , µ0 =真空の透磁率 (1)

cf. クーロンの法則，式 (2. 3. 5)
SI改定前は，A(アンペア)の定義で，µ0 := 4π × 10−7 H/mと定義
されていた．(H:=Wb/A，ヘンリー.) 改定後は，素電荷 eによって
C(クーロン)が定義されることになったので，µ0は測定値となる．

ε0と同様に (§§2. 1. 3参照)，微細構造定数 αを用いて，

真空の透磁率 µ0� �
µ0 =

2hα
ce2 = 1.256 · · · × 10−6 H/m(' 4π × 10−7 H/m) (2)� �
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実用上は µ0 = 4π × 10−7 H/mと近似して問題ない．
(実は，ε0µ0 = 1/c2．第 5章参照．)
細い一様な導線 (回路C )を流れる電流の場合� �
断面の積分を実行して (式 (3. 1. 21))，

B(r) = µ0I
4π

∫
C

dr ′ × (r − r ′)

|r − r ′|3
. (3)

� �
電流素片のつくる磁場� �

r

r-r’
Idr’

dB(r)

r’

dB(r) = µ0

4π
Idr ′ × (r − r ′)

|r − r ′|3
. (4)

� �
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例 1: 直線電流のつくる磁場

x

y

z

I

R

r=(x,y,z)

r’=(0,0,z’)Idr’

φ̂

電流を z軸にとると，

B(r) = µ0I
2πR

φ̂ . (5)

電流からの距離に反比例．電流の方

向について右ねじをまわす方向．

dr ′ = ẑdz ′ (ẑ = (0, 0, 1)，z軸方向の単位ベクトル)と書けるから，

B(r) = µ0I
4π

∫ ∞

−∞

dz ′ ẑ × (r − r ′)

|r − r ′|3
. (6)

ẑ × (r − r ′) = (0, 0, 1)× (x, y, z − z ′) = (−y, x, 0) = Rφ̂ . (7)
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x

y

R

R

^

φ^

φ
ただし，R =

√
x2 + y2，φ̂は方位角方向 (z

軸のまわりを回る方向)の単位ベクトル．

B(r) = µ0I
4π

Rφ̂

∫ ∞

−∞

dz ′

(
√

R2 + (z − z ′)2)3
(8)

=
µ0I
4π

Rφ̂

∫ ∞

−∞

dz ′

(
√

R2 + z ′2)3
=

µ0I
2πR

φ̂ .

問 :最後の等号を示せ． (ヒント: z ′ = R tan θと変数変換.)
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例 2: 円電流が中心軸上につくる磁場
z

x

y
dr’

C

I

r=(0,0,z)

r’=(acosθ,asinθ,0)
θ

半径 a，中心軸を z軸にとると，

B(z) = µ0I
2

a2

(a2 + z2)3/2 ẑ . (9)

dr ′ = (−a sin θ, a cos θ, 0)dθ (10)
より，

dr ′ × (r − r ′) = adθ(− sin θ, cos θ, 0)× (−a cos θ,−a sin θ, z)
= adθ(z cos θ, z sin θ, a) . (11)

また，

|r − r ′| =
√

a2 + z2 . (12)
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よって，

B(z) = µ0I
4π

∫
C

dr ′ × (r − r ′)

|r − r ′|3
(13)

=
µ0I
4π

a
(a2 + z2)3/2

∫
dθ(z cos θ, z sin θ, a)

=
µ0I
2

a2

(a2 + z2)3/2 ẑ .
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3.3.2 定常電流間に働く力

アンペール (Ampère)の力

I

C

dr

r

1 2CI

1

1I1

1
r2

2

I dr2 2

F =
µ0I1I2

4π

∫
C2

∫
C1

dr2×(dr1×(r2 − r1))

|r2 − r1|3
.

(14)

電流 I1が電流 I2の場所につくる磁場は，式 (3)より，

B(r2) =
µ0I1

4π

∫
C1

dr1 × (r2 − r1)

|r2 − r1|3
. (15)

この磁場が電流 I2に及ぼす力は，式 (3. 2. 14)より，
dF = I2dr2 × B(r2) . (16)

これをC2に沿って積分して，式 (14)を得る．
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例 1: 平行直線電流間に働く力

I

F

R

B

1 2I
単位長さ当りの力は，

F単位 =
µ0I1I2

2πR
. (17)

力の向きは，電流に垂直で，電流が同じ (異な
る)方向のときは引力 (斥力)．

式 (5)より，I1が I2の所に作る磁場は，

B =
µ0I1

2πR
. (18)

I2が受ける力は，式 (16)より，(力の大きさだけ考えると)

dF = I2dr2B =
µ0I1I2

2πR
dr2 . (19)

(I2とBは直交．) これより，式 (17)を得る．
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3.3.3 ベクトルポテンシャル

∇r

(
1

|r − r ′|

)
= − r − r ′

|r − r ′|3
. (20)

(∇r は rについての微分を表わす) を式 (1)と比較して，

B(r) = µ0

4π

∫
i(r ′)×∇r

(
−1

|r − r ′|

)
dV ′

=
µ0

4π
∇r ×

∫ i(r ′)

|r − r ′|
dV ′ (21)

ベクトルポテンシャル

A(r) := µ0

4π

∫ i(r ′)

|r − r ′|
dV ′ (22)

を用いると，
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磁束密度とベクトルポテンシャルの関係

B(r) = ∇× A(r) . (23)

cf. E = −∇φ

式 (3)に対応する式は，
ベクトルポテンシャル (導線を流れる電流の場合)� �

A(r) = µ0I
4π

∫
C

dr ′

|r − r ′|
. (24)

� �
式 (23)より，

Bの発散
∇ · B(r) = ∇ · (∇× A) = 0 . (25)

(Aの形に依らない．) 式 (2. 5. 45) ∇ · E = ρ/ε0と較べると，“磁
荷”が無いことを表わしている．
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ベクトルポテンシャルの不定性� �
χ(r)を任意のスカラー場とすると，Aと

A′ := A +∇χ (26)

は同じBを与える．� �
∵ 2つのベクトルポテンシャルAとA′が同じBを与えるとする．

B = ∇× A = ∇× A′ . (27)

これより，

∇× (A′ − A) = 0 . (28)

§§2. 4. 6で示したように，回転がゼロのベクトル場は，スカラー場
の勾配で書ける．つまり，スカラー場 χ(r)を用いて，

A′ − A = ∇χ . (29)

田中 実 (大阪大学理学研究科) 3.3 定常電流の磁場とベクトルポテンシャル 第 3 章 定常電流と静磁場 12 / 27



また，直接計算で確かめることもできる．

∇× A′ = ∇× A +∇×∇χ = B . (30)

問 :最後の等号を示せ．

この自由度を使って，∇ · A = 0とすることができる．後で見るよ
うに，式 (22)のAはこれを満す．

例 1: 一様な磁場Bを与えるベクトルポテンシャル
A =

1
2

B × r (31)

(もちろん，これは一意的ではない．)

Ax =
1
2
(Byz − Bzy) , Ay =

1
2
(Bzx − Bxz) , Az =

1
2
(Bxy − Byx)

(32)

より，
田中 実 (大阪大学理学研究科) 3.3 定常電流の磁場とベクトルポテンシャル 第 3 章 定常電流と静磁場 13 / 27



(∇× A)x =
∂Az

∂y
− ∂Ay

∂z
=

1
2
(Bx + Bx) = Bx , (33)

(∇× A)y =
∂Ax

∂z
− ∂Az

∂x
=

1
2
(By + By) = By ,

(∇× A)z =
∂Ay

∂x
− ∂Ax

∂y
=

1
2
(Bz + Bz) = Bz .

すなわち，B = ∇× A．

小さいループ電流の作る磁場

ループ電流の磁気双極子モーメントをmとすると，ループの大き
さに較べて遠方では，

A(r) = µ0

4π
m × r

r3 , B(r) = µ0

4π
3(m · r)r − r2m

r5 (34)

証明のアイデア: 遠方から見ればループの形は関係ないから，簡単
なループで式 (24)を用いて計算する．
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証明: 図のような xy平面上の長方形
ループ電流 I を考える．

A(r) = µ0I
4π

∫
C

dr ′

|r − r ′|
. (35)

辺 1の積分は，dr ′ = ŷdy′，

r ′ = (b/2, y′, 0)，とすると，
x

y

z

r=(x,y,z)

b

2

a

2

b

2

a

2

I
1

2

3

4

1
|r − r ′|

=
1√

(x − b/2)2 + (y − y′)2 + z2

=
1√

r2 − xb − 2yy′ + b2/4 + y′2
.

r � a, bとして，(−a/2 < y′ < a/2)
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1
|r − r ′|

=
1
r

1√
1 − xb/r2 − 2yy′/r2 + b2/(4r2) + y′2/r2

' 1
r

(
1 +

xb
2r2 +

yy′

r2

)
.

∫
1

dr ′

|r − r ′|
' ŷ

∫ a/2

−a/2

1
r

(
1 +

xb
2r2 +

yy′

r2

)
dy′ = ŷ a

r

(
1 +

xb
2r2

)
.

辺 3の積分は，b → −b，dr ′ = −ŷdy′とすればよい．∫
3

dr ′

|r − r ′|
' −ŷ a

r

(
1 − xb

2r2

)
.

辺 4の積分は，dr ′ = x̂dx ′，r ′ = (x ′,−a/2, 0) として，∫
4

dr ′

|r − r ′|
= x̂

∫ b
2

−b
2

dx ′√
(x − x ′)2 + (y + a/2)2 + z2

' x̂ b
r

(
1 − ya

2r2

)
.
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辺 2は， ∫
2

dr ′

|r − r ′|
' −x̂ b

r

(
1 +

ya
2r2

)
.

まとめると，

A(r) = µ0I
4π

(
−x̂ b

r
ya
r2 + ŷ a

r
xb
r2

)
(36)

=
µ0I
4π

ab
r3 (−x̂y + ŷx) = µ0I

4π
ab
r3 (−y, x, 0) .

x

y

z

A

磁気双極子モーメントm = Iabẑ = (0, 0, Iab) (abは回路の面積，ẑ
は回路の法線ベクトル) を用いると，

A(r) = µ0

4π
m × r

r3 (37)

と書ける．B = ∇× Aから，(宿題 3の式 (1)も用いて)
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B(r) = µ0

4π
∇×

(
m × r

r3

)
(38)

=
µ0

4π

[
∇

(
1
r3

)
× (m × r) + 1

r3∇× (m × r)
]
.

∇(1/r3) = −3r/r5，∇× (m × r) = 2mを用いると，

B(r) = µ0

4π

[
−3r × (m × r)

r5 +
2m
r3

]
.

さらに，公式

a × (b × c) = b(a · c)− c(a · b) 問: この公式を示せ． (39)

を用いると，r × (m × r) = mr2 − r(m · r)で，

B(r) = µ0

4π
−3mr2 + 3r(m · r) + 2mr2

r5

=
µ0

4π
3(m · r)r − r2m

r5 (40)

(証明終) cf. (2. 4. 56)，電気双極子の作る電場
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平面回路について電流 I，面積 S，法線ベクトル nとすると，

m = ISn (41)

となり，遠方でのベクトルポテンシャル，磁場は式 (34)で表わさ
れる．
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3.3.4 アンペール (Ampère)の法則
微分形のアンペールの法則

∇× B(r) = µ0i(r) (42)

証明のアイデア: 式 (22)で与えられるBの回転を考える．
証明: ∇× B = ∇× (∇× A) = ∇(∇ · A)−4A . (43)

問 :最後の等号を示せ．第 1項の寄与は，

∇ · A(r) = µ0

4π
∇ ·

∫ i(r ′)

|r − r ′|
dV ′ =

µ0

4π

∫
∇r ·

i(r ′)

|r − r ′|
dV ′ (44)

=
µ0

4π

∫
i(r ′) ·∇r

(
1

|r − r ′|

)
dV ′

(∇r → ∇r′として)

=
µ0

4π

∫
i(r ′) ·∇r′

(
1

|r − r ′|

)
dV ′
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(部分積分をして)

=
µ0

4π

∫ [
(∇r′ · i(r ′))

(
−1

|r − r ′|

)
+∇r′ ·

(
i(r ′)

|r − r ′|

)]
dV ′

(定常電流ゆえ∇ · i = 0)

=
µ0

4π

∫
∇r′ ·

(
i(r ′)

|r − r ′|

)
dV ′

(ガウスの定理を用いて)

=
µ0

4π

∫ i(r ′) · dS ′

|r − r ′|
(電流分布は遠方でゼロ)

= 0 .

よって，

∇× B = −4A . (45)
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一方，静電場のときの議論から，式 (2. 4. 19)

φ(r) = 1
4πε0

∫
ρ(r ′)

|r − r ′|
dV ′

が，式 (2. 7. 4)

4φ(r) = −ρ(r)
ε0

の解であることを知っている．これから，式 (22)

A(r) = µ0

4π

∫ i(r ′)

|r − r ′|
dV ′

が，ベクトルポテンシャルに対するポアッソン方程式

4A(r) = −µ0i(r) (46)

を満すことが分かる．よって，式 (42)を得る．(証明終)
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積分形のアンペールの法則∫
C

B · dr = µ0I (47)

証明のアイデア: 式 (42)を面積分して，ストークスの定理を用
いる．

証明: 閉曲線C に囲まれた面 S を考える．
式 (42)をこの面で積分すると，∫

S
(∇× B) · dS = µ0

∫
S

i · dS . (48)
S

C

i

∫
S i · dSは S を通る電流 I であるから，ストークスの定理より，式

(47)を得る．(証明終)
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例 1: 定常直線電流の作る磁場 (cf. §§3. 3. 1 例 1)

C

R

z

I

BB

電流を z軸にとると，

B(r) = µ0I
2πR

φ̂ . (49)

Bは z軸まわりの円周方向を向き，対称性からその大きさは電流か
らの距離R =

√
x2 + y2にのみよる．すなわち，

B(r) = B(R) φ̂ . (50)
z軸のまわりの半径Rの円に式 (47)を適用すると，

2πRB(R) = µ0I . (51)
つまり，

B(R) =
µ0I
2πR

. (52)
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例 2: 無限に長いソレノイド
z

RlC

1

2
3

C

C

a

R R

l

1 2

ソレノイドの軸を z軸，半径 a，電流
I，単位長さ当りの巻数を n とする．

B =

{
µ0nI ẑ , R < a

0 , R > a (53)

円周方向の磁場は無い．動径方向の磁場は±zの寄与が打ち消し合
う．結局，z成分のみがあり，対称性から，

B(r) = Bz(R)ẑ (54)
と書ける．閉曲線C1に式 (47)を用いて，∫

C1

B(r) · dr = `Bz(R2)− `Bz(R1) = 0 . (55)
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よって，

Bz(R1) = Bz(R2) ソレノイド外部ではBz は一定． (56)

式 (47)を閉曲線C2に適用すると，ソレノイド内部でもBz は一定．

ソレノイド内部から出た磁束 (ある面 S を貫くB
を S で積分したもの)は，必ず外部を通って内部
にもどらなければならないから，

Bz(内部) ·内部の面積 = Bz(外部) ·外部の面積 .
(57)

内部の面積は πa2，外部の面積は無限大．従って，

Bz(外部) = 0 . (58)

C3について考えると，

`Bz(内部) = µ0n`I . (59)
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まとめ: 静磁場の法則

∇ · B(r) = 0 , (60)
∇× B(r) = µ0i(r) . (61)

式 (60)は，Bが時間に依存するときも正しい．(説明は第 5章で．)

∇ · B(r, t) = 0 .

ベクトルポテンシャルを用いると，

B(r) = ∇× A(r) , 4A(r) = −µ0i(r) , ∇ · A(r) = 0 . (62)
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