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2.5.1 ベクトル場の面積分と流束 (flux)

各点での速度が v(r)(ベクトル場)で与えられるような流体を考え
る．小さな面∆S を考え，その法線方向の単位ベクトルを nとす
る．単位時間に∆S を通って流れる流体の量は，vnを vの n方向
成分として，

vn ∆S = v · n ∆S = v ·∆S, n ∆S =: ∆S. (1)

となる．

n

v

∆S

n

v

∆S
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一般の面 S について，単位時間に S を通って流れる流体の量は，S
を多数の小さな面∆Siに分割して考えれば，

S

∆S

面 Sを通る流束 (flux)

lim
∆Si→0

∑
i

v(r i) ·∆S i =

∫
S

v(r) · dS. (面積分) (2)
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2.5.2 ガウスの法則 (積分形)

積分形のガウスの法則∫
S

E(r) · dS =
Qint.

ε0
Qint. :=閉曲面 S の内部の電荷 (3)

1/r2則の帰結

証明のアイデア: 流束の考え方を電場にも当てはめる．まず 1個の
点電荷について示し，重ね合わせの原理で一般化する．

証明: 正の点電荷 qが 1個ある場合．

S

S

E

Er

r

1

1

22

2

1

q

図のような半径 r1と r2の球面の一部で

挟まれた領域の表面 S(閉曲面)を考
える．

S = S1 + S2 +側面 (4)

側面を通る電場は 0なので，
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∫
S

E(r) · dS =

∫
S1

E(r) · dS +

∫
S2

E(r) · dS (5)

閉曲面の場合，法線ベクトルは外向きにとる．∫
S1

E(r)·dS = − q
4πε0

1
r2

1

∫
S1

dS ,

∫
S2

E(r)·dS =
q

4πε0

1
r2

2

∫
S2

dS (6)

(1/r2則が使われた．) さらに，∫
S1

dS∫
S2

dS
=

r2
1

r2
2

(7)

を用いると，

−
∫

S1

E(r) · dS =

∫
S2

E(r) · dS (8)

すなわち， ∫
S

E(r) · dS = 0 (9)
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次に，中心部分の角度が小さいとして，S1，S2が動径について “傾
いて”いる場合を考えよう．

S

S

E

r

r

1

1

2

2

q

n
θ

∆

∆

∆Siの面積は傾いていないときの

1/ cos θ倍になる．∆Siは小さいからE
の値はその上で一定とみなせ，Eの法線
成分は En = E · n = E cos θ．よって，

−E1 ·∆S1 = E2 ·∆S2 . (10)

つまり，式 (9)が成り立つ．

S

q

内部に電荷 qを含まないような一般の閉
曲面 Sについても，図のような小錐体の
集まりを考えれば，下面と上面で流束は

打ち消し合う．∫
S

E(r) · dS = 0, S は qを含まない閉曲面． (11)
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q

S

S
E

E

1

1

2

2 S が qをその内部に
含む場合，明らかに

S1と S2の寄与は打

ち消さない．

S

S’q

n

n

n

S

i

e

そこで，qを囲む小さな面
S ′を考え，S の内部から
S ′の内部を取り除く．

この S と S ′に挟まれた領域については，(qを含まないから)∫
S+S′

E · dS = 0, (12)

が成り立つ．(このとき，S ′の法線ベクトルは内向きの ni．)
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S ′の法線ベクトルを外向きの neにとることにすれば，∫
S

E · dS =

∫
S′

E · dS. (13)

(すなわち，S を通る流束は S ′を通る流束に等しい．)
S ′の形は任意だから，半径 rの球面を考えることにすると，∫

S′
E · dS =

1
4πε0

q
r2 4πr2 =

q
ε0
(= N ⇐電気力線の本数). (14)

(うまく，rによらない数になっている．) 式 (13)より，∫
S

E · dS =
q
ε0
, S は qを含む閉曲面. (15)

まとめると，∫
S

E · dS =

{
0, qが S の外部にあるとき

q/ε0, qが S の内部にあるとき (16)

(S は任意の閉曲面．)
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点電荷が複数あるときは，

E =
∑

i

E i (17)

から， ∫
S

E · dS =
∑

i

∫
S

E i · dS =
∑

i∈内部

qi

ε0
=

Qint.

ε0
, (18)

Qint.：=
∑

i∈内部

qi = S の内部にある電荷の和.

連続的な電荷分布の場合は，和を積分に置き換えて，∫
S

E · dS =
Qint.

ε0
, Qint. :=

∫
V
ρ(r) dV . (19)

ただし，V は S の内部の領域．(証明終)
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例 1: 一様な球状電荷分布

r

aO =⇒

r

EHrL

原点Oを中心とする半径 aの球の内部に電荷が一様に分布してい
るとする．全電荷をQ，r ≤ aでの電荷 (体積)密度を ρとすると，

Q =
4π
3

a3ρ . (20)

田中 実 (大阪大学理学研究科) 2.5 ガウス (Gauss) の法則 第 2 章 静電場 10 / 27



中心O，半径 r(> a)の球面を Sとしてガウスの法則を適用すると，∫
S

E(r) · dS =
Q
ε0

. (21)

対称性から，E(r)は動径方向を向き，S 上では一定の大きさ E(r)
を持つから， ∫

S
E(r) · dS = E(r)

∫
S

dS = 4πr2E(r) (22)

よって，

E(r) = Q
4πε0

1
r2 , r > a . (23)

(中心に点電荷Qがあるときと同じ．)
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r < aのときは，ガウスの法則は，∫
S

E(r) · dS =
1
ε0

4
3
πr3ρ . (24)

左辺は上と同じで，∫
S

E(r) · dS = 4πr2E(r) . (25)

よって，

E(r) = ρ

3ε0
r =

1
4πε0

Q
a3 r . (26)

まとめると，

E(r) =


Q

4πε0

r
a3 , r < a

Q
4πε0

1
r2 , r > a

(27)
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半径 aのうすいい球殻上に一様に分布した電荷 (全電荷Q)� �

a

Q

E(r) =


, r < a

, r > a

� �
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例 2: 一様な直線状電荷分布 (cf. §§ 2. 3. 4 例 2)
電荷の線密度を λとし，直線電荷を中心とする半径R，長さ Lの円
柱の表面 S を考える．E(r)は中心軸に垂直で，軸対称性より，中
心軸からの距離Rのみの関数のはず．ガウスの法則より，

L

R

S

E(R)

∫
S

E(r) · dS =
λL
ε0

, (28)

左辺 = E(R)

∫
Sの側面

dS = 2πRLE(R) .

よって，

E(R) =
λ

2πε0

1
R
. (29)

(§§ 2. 3. 4 例 2と同じ結果)．

田中 実 (大阪大学理学研究科) 2.5 ガウス (Gauss) の法則 第 2 章 静電場 14 / 27



例 3: 一様な平面状電荷分布
無限に広い一様な平面電荷分布 (電荷の面密度 σ)を考える．電場は
面に垂直で面の上下で反対向き．また，面上の位置によらない．面

を垂直に貫く円柱 (底面積A)を考え，その表面 S についてガウス
の法則を用いると，

E

E

A

∫
S

E(r) · dS =
Aσ

ε0
. (30)

側面は積分に寄与しないから，底面での

電場の大きさを Eとすれば，

E A(上面) + E A(下面) =
Aσ

ε0
. (31)

よって，

E =
σ

2ε0
. (32)

面からの距離にもよらない一様な場．
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静電場内での釣り合い: アーンショー (Earnshaw)の定理
静電場内で電荷のない場所では，安定な釣り合い点はない．

証明のアイデア: 安定な釣り合い点の近傍では復元力
が働くことを用いる．

証明: 静電場内でクーロン力が釣り合う点 P0を考え

る．この点に正の試験電荷 (test charge，静電場を変え
ないような仮想的な点電荷)q0(> 0)を置く．この点が
安定ならば，q0の位置を少しずらすと復元力が働く．

P0を囲む仮想的な小さな面 Sを考えると，S上では常
に P0方向 (内向き)の電場Eがあるはず．このとき，∫

S
E · dS < 0 . (33)

つまり，ガウスの法則より S内には負の電荷がなけれ
ばならない．Sを無限小にとると，P0に負の電荷がな

ければならないことになる．

-q

-q

-q

P0

P
0E

S
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従って，電荷のない場所では安定な釣り合い点はない．(証明終)
ポテンシャルについて考えると，釣り合いの点

P0では，E = −∇φ = 0で，φは極小，極大，
または鞍点となる．さらに，

φ(P) = −
∫ P

P0
E · drで，安定な釣り合いの点か

らどの方向に向かってこの積分をしても，

E · dr < 0であるから，φ(P) > φ(P0) となり，
P0の近傍では φは増える．つまり，安定な釣
り合いの点では極小値をとる．q0 < 0の場合は
極大となる．逆に，ポテンシャルが極小または

極大になる点は，安定な釣り合いの点である．

P
0E E

φ

P
0 E

P
dr

電荷のない場所では安定な釣り合いの点がないということは，

アーンショーの定理 (ポテンシャル版)
電荷のない領域では静電ポテンシャルは極小値も極大値もとら

ない．
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2.5.3 ガウスの定理

ベクトル場の divergence(発散)

∇ · A(r) = ∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
(スカラー量) (34)

(∇ · A = divAと書くこともある．)

ガウスの定理 ∫
S

A(r) · dS =

∫
V
∇ · A(r) dV (35)

(左辺は閉曲面 S についての面積分で，右辺は S 囲まれた領域V で
の体積積分である．)
証明のアイデア: V を小さな直方体に分割する．
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証明: 図のような小さい直方体
V0を考える．この直方体の表面

S0を通るベクトル場Aの流束を
考えよう．まず，z軸に垂直な面
Sz0(下面)と Sz0+∆z(上面)につい
て考える．Sz0を通る流束は (法線
ベクトルの向きに注意して)，

n

n

( )

(

(

(

)

)

)

x0 ,

x0

x0

y
0

y
0

y
0

z0

z0

z0

x0 y
0

z0

,

,

,, +∆

+∆

+∆

z

,,x

,y

Sz0+∆z

Sz0

−
∫

Sz0

Az(x, y, z0) dxdy . (36)

Sz0+∆z を通る流束は∫
Sz0+∆z

Az(x, y, z0 +∆z) dxdy . (37)
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これらの和は (∆V0を小直方体の体積として)，∫
{Az(x, y, z0 +∆z)− Az(x, y, z0)} dxdy (38)

'
∫

∂Az(x, y, z0)

∂z
∆z dxdy ' ∂Az(x0, y0, z0)

∂z
∆z∆x∆y =

∂Az

∂z
∆V0 .

x軸，y軸に垂直な面についても同様．よって，小直方体の表面か
ら出る流束は，∫

S0

A(r) · dS '
(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

)
∆V0 (39)

= (∇ · A)|r=(x0,y0,z0) ∆V0 .

ある点での∇ ·Aはその点の近傍での単位体積あたりの外向きの流
れ (わき出し)を表わす．
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V1 V2

n
1n2

次に流束の分割を考える．図のような 2つの小
直方体V1,V2を考える．V1(2)の表面 S1(2)の流

束は， ∫
S1

A · dS = ∇ · A ∆V1 , (40)∫
S2

A · dS = ∇ · A ∆V2 . (41)

V1とV2を合わせたものをV1+2，その表面を S1+2とすると，V1と

V2の境界面での面積分は打ち消し合うから (nが逆向き)，∫
S1

A · dS +

∫
S2

A · dS =

∫
S1+2

A · dS . (42)

よって， ∫
S1+2

A · dS = ∇ · A ∆V1 +∇ · A ∆V2 .
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一般の (小さくない)領域V を小直方体に分割すると，V の表面を
S として，(∆Viは i番目の小直方体の体積)∫

S
A · dS =

∑
i

∇ · A ∆Vi =

∫
V
∇ · A dV (体積積分) (43)

(証明終)
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2.5.4 ガウスの法則 (微分形)

積分形のガウスの法則は∫
S

E(r) · dS =
Qint.

ε0
=

1
ε0

∫
V
ρ(r) dV . (44)

これは，閉曲面 S上の電場とその内部の電荷との関係を表わす．一
般に電荷と面は離れていてもよいから (cf. §§2. 5. 2の例)，遠隔相互
作用の考え方．これを近接相互作用の形に書き直すことができる．

微分形のガウスの法則

∇ · E(r) = ρ(r)
ε0

(45)

証明のアイデア: ガウスの定理を用いる．
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証明: ガウスの定理を用いると，∫
S

E(r) · dS =

∫
V
∇ · E(r) dV . (46)

従って，式 (44)は，∫
V
∇ · E(r) dV =

1
ε0

∫
V
ρ(r) dV . (47)

任意の領域V でこれが成り立つから，

∇ · E(r) = ρ(r)
ε0

. (48)

(証明終)
点 rでの電荷密度が同じ点 rでの電場の “微分”を決定していると
考えられるから，近接相互作用の考え方になっている．
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例えば，Ex の変化だけを考えると (Ey,Ez = const.)，

Ex(x +∆x, y, z)− Ex(x, y, z) '
∂Ex

∂x
∆x (49)

= ∇ · E(x, y, z)∆x =
ρ(x, y, z)

ε0
∆x .

すなわち，

Ex(x +∆x, y, z) ' Ex(x, y, z) +
ρ(x, y, z)

ε0
∆x . (50)

例 1: 一様な球状電荷分布
§§2. 5. 2の例 1の電場は微分形のガウスの法則を満たしている．

電荷密度は，

ρ(r) =
{

ρ, r < a
0, r > a (51)

で，
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電場は，

E(r) =


ρ

3ε0
r , r < a

Q
4πε0

r
r3 , r > a, Q = 4πa3ρ/3

(52)

であった．r < aでは，

∇ · E =
ρ

3ε0
∇ · r =

ρ

3ε0

(
∂x
∂x

+
∂y
∂y

+
∂z
∂z

)
=

ρ

ε0
(53)

r > aでは，

∇ · E =
Q

4πε0
∇ · r

r3 =
Q

4πε0

(
3
r3 − 3(x2 + y2 + z2)

r5

)
= 0 (54)

ただし，

∂

∂x

( x
r3

)
=

等を用いた．
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まとめ: 静電場の法則

∇ · E(r) = ρ(r)
ε0

(55)

∇× E(r) = 0 (56)

式 (55)は ρ,Eが時間に依存しているときも正しい．(理由は第 5
章で．)

∇ · E(r, t) = ρ(r, t)
ε0
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