

Generation of Twisted Gamma-Rays Using Accelerated Ions

Minoru Tanaka (Osaka U)

In collaboration with

Noboru Sasao (Okayama U) and Motomichi Tashiro (Toyo U)

Ann. Phys. (Berlin) 2022, 2200168. arXiv:2203.06988

MMQS2022, Mie University, 2022/12/8

Twisted photon(捩光子), optical vortex(光渦) Orbital angular momentum (OAM) of light winding field phase ~ $e^{im\varphi}$ G. Molina-Terriza et al.

field intensity

phase singularity

transvers Poynting vector

Nat. Phys. 3, 305 (2007)

wave front helicoid

Interference patter with plane wave

computer-generated hologram

Generation (and use) of twisted photons Optical region Y. Shen et al., Light: Sci. & App. 8, 90 (2019) fork hologram, lens-based mode converter, etc. (micro manipulation, imaging, data transmission, etc.) X-ray region S. Sasaki, I. McNulty, PRL 100, 124801 (2008) helical undulator, FEL E. Hemsing et al. Nat. Phys. 9, 549 (2013) Gamma-ray region (proposals) backward Compton scattering $e + \gamma_{\rm tw} \rightarrow e + \gamma_{\rm tw}$ U.D. Jentschura, V.G. Serbo, PRL 106, 013001 (2011) nonlinear Thomson scattering Y. Taira, T. Hayakawa, M. Katoh, Sci. Rep. 7, 5018 (2017) $e + \gamma_{\rm pw/tw} + \gamma_{\rm pw/tw} + \cdots \rightarrow e + \gamma_{\rm tw} + \cdots$ Y.-Y. Chen et al., Phys. Rev. Lett. 121, 074801 (2018) Y.-Y. Liu et al., Opt. Lett. 48, 395 (2020) 3

Gamma factory Rayleigh scattering by boosted ion $\gamma_i + |g\rangle \rightarrow |e\rangle \rightarrow |g\rangle + \gamma_f$ Lorentz boost $E = \gamma M$ e.g. $\gamma \sim 10^3$ @LHC Level splitting: E_{eq} binding energy of H-like ion = $(Z^2/n^2)13.6 \text{ eV}$ Resonance condition: $2\gamma\omega_i \simeq E_{eg}$ **Up-conversion:** $\omega_f^{\text{max}} \simeq 2\gamma E_{eq} \simeq 4\gamma^2 \omega_i \sim 0.1 \text{--}1 \text{ GeV}(2\gamma/10^4)^2$

E.G.Bessonov, NIMB 309, 92 (2013) M.W. Krasny, CERN-SPSC-2019-031; SPSC-I-253 $\omega_i \sim 1\text{--}10 \text{ eV}$ $Z^2/2\gamma \sim 0.1\text{-}1$ heavy ion

Excitation to a state of large angular momentum 2γ absorption $\gamma_{pw} + \gamma_{pw} + I \rightarrow I^*$ Raman process $\gamma_{pw} + I \rightarrow I^* + \gamma_{pw}$ Efficient population transfer Twisted photon generation in de-excitation $I^* \to I + \gamma_{\rm tw}$

He-like ions considered

Twisted photon generation by 2γ excitation

- by Stimulated Raman Adiabatic Passage (STIRAP)

Minoru TANAKA

 $(1s)(2p) {}^{3}\mathrm{P}_{2} \rightarrow (1s)^{2} {}^{1}\mathrm{S}_{0} + \gamma_{\mathrm{tw}}$ (m = 2)

M2 transition dominates. $\propto Z^8$ heavy ions

Kr (Z=36), Xe (Z=54) studied

Levels and transitions of He-like ions Calculation by GRASP2018 (MCDHF+RCI)

$$|g\rangle = (1s)^{2} \, {}^1\mathrm{S}_0$$

Minoru TANAKA

Outline of numerical calculation **Optical Bloch Equation** $|g\rangle = (1s)^{2} {}^{1}S_{0}, |e\rangle = (1s)(3s) {}^{3}S_{1}, |f\rangle = (1s)(2p) {}^{3}P_{2}$ and all other (1s)(2s) and (1s)(2p) states involved photo-ionization included

Parameter	Symbol	Kr	Xe
Lorentz boost factor	γ_{ion}	2500	5000
Pump laser wavelength	λ_p	403	346
Pump laser intensity	$I_p(0)$	4×10^5	4×1
Stokes laser wavelength	λ_s	2690	2372
Stokes laser intensity	$I_s(0)$	4×10^5	4×1
Laser pulse width	σ_L	1.0	1.0
Laser pulse delay	t_d	0.5	0.5
Pump laser detuning	Δ	5	5
Two-photon detuning	δ	0	0

Results (Kr)

Population

Signal, background, photo-ionization

40

BG photons: from other 2s, 2p to 1s B/S=5.6 %

lon beam lifetime due to photo-ionization~10⁵ sec. (A ring of 30 km circumference asuumed)

Minoru TANAKA

t [ps]

Signal, background, photo-ionization

Minoru TANAKA

 $Sig \times 10^5$ $-BG \times 10^6$ 20

BG photons: from other 2s, 2p to 1s B/S=19.2 %

lon beam lifetime due to photo-ionization~10⁵ sec. (A ring of 30 km circumference asuumed)

Summary

Twisted gamma-ray from accelerated He-like ion STIRAP $(1s)^{2} {}^{1}S_0 \rightarrow (1s)(2p) {}^{3}P_2$, M2 de-excitation Signal 65.4(306) MeV for Kr(Xe) of boost 2500(5000) $10^9 \text{ ions/bunch} \rightarrow 2.3(5.8) \times 10^8 \text{ Hz/bunch} \quad C_{\text{ring}} = 30 \text{ km}$ BG and ionization loss B/S = 5.6(19.2)%, loss fraction = $6.9(11) \times 10^{-10}$ Prospects Physics applications: nuclear, astro, plasma etc. Comparison with electron beam

