

Implication of initial spatial phase in the coherent radiative neutrino pair emission

Minoru TANAKA Osaka University

in collaboration with K.Tsumura (Kyoto U), N. Sasao, S. Uetake, M.Yoshimura (Okayama U)

10th international workshop on fundamental physics using atoms (FPUA2018) Jan. 8–9, 2018, Nagoya

INTRODUCTION

Unknown properties of neutrinos Absolute mass $m_{1(3)} < 71(66) \text{ meV}, 50 \text{ meV} < m_{3(2)} < 87(82) \text{ meV}$ NO $m_2 - m_1 - m_1$ m_3 ——— Ordering pattern normal or inverted m_2 m_3 m_1 -Mass type Dirac or Majorana **CP** violation one Dirac phase, two Majorana phases α , β δ

Neutrino oscillation: SK, T2K, reactors,... $\Delta m^2, \ \theta_{ij}, \ NO \ or \ IO, \ \delta$ Neutrinoless double beta decays $\left|\sum m_i U_{ei}^2\right|$ Dirac or Majorana, effective mass Beta decay endpoint: KATRIN absolute mass **Our approach** $E \lesssim O(eV)$ **tabletop experiment** Atomic/molecular processes absolute mass, NO or IO, D or M, α $(,\beta - \delta)$

Conventional approach $E \gtrsim O(10 \text{keV})$ **big science**

Neutrino experiments

Minoru TANAKA

Plan of talk

Introduction (2) Radiative emission of neutrino pair (RENP) (4) Boosted RENP (4) Summary (1)

RENP

Radiative Emission of Neutrino Pair (RENP)

A.Fukumi et al. PTEP (2012) 04D002, arXiv:1211.4904

 $|e\rangle \rightarrow |g\rangle + \gamma + \nu_i \bar{\nu}_j$

Λ-type level structure Ba, Xe, Ca+,Yb,... H2, O2, I2, ...

Atomic/molecular energy scale ~ eV or less close to the neutrino mass scale cf. nuclear processes ~ MeV Rate ~ $\alpha G_F^2 E^5 \sim 1/(10^{33} \text{ s})$ Enhancement mechanism?

Macroscopic target of N atoms, volume V (n=N/V) total amp. $\propto \sum_{a} e^{-i(\vec{k}+\vec{p}+\vec{p'})\cdot\vec{x}_{a}} \simeq \frac{N}{V}(2\pi)^{3}\delta^{3}(\vec{k}+\vec{p}+\vec{p'})$ $d\Gamma \propto n^{2}V(2\pi)^{4}\delta^{4}(q-p-p') \qquad (q^{\mu}) = (E_{eg} - E_{\gamma}, -\vec{k})$ macrocoherent amplification **RENP** spectrum

D.N. Dinh, S.T. Petcov, N. Sasao, M.T., M. Yoshimura PLB719(2013)154, arXiv:1209.4808

Energy-momentum conservation

due to the macrocoherence

familiar 3-body decay kinematics virtual parent particle $(P^{\mu}) = (E_{eg}, \mathbf{0}), P^2 = E_{eg}^2$

Six thresholds of the photon energy

$$\omega_{ij} = \frac{E_{eg}}{2} - \frac{(m_i + m_j)^2}{2E_{eg}} \qquad i, j = 1, 2, 3$$

 $E_{eg} = E_e - E_g$ atomic energy level splitting

Required energy resolution $\sim O(10^{-6}) \,\mathrm{eV}$ typical laser linewidth

$$\Delta \omega_{\mathrm{trig.}} \lesssim 1 \,\mathrm{GHz} \sim O(10^{-6}) \,\mathrm{eV}$$

Boosted RENP

M.T., K.Tsumura, N.Sasao, S.Uetake, M.Yoshimura, PRD96, 113005 (2017); arXiv:1710.07135

Initial spatial phase

Preparation of initial coherent state

Two-photon absorption: $\gamma_1(k_1) + \gamma_2(k_2) + |g\rangle \rightarrow |e\rangle$ counter-propagating Initial spatial phase (ISP) $|e\rangle$ $\langle e|\rho|g\rangle \propto e^{i\boldsymbol{p}_{eg}\cdot\boldsymbol{x}}$ $p_{eq} = k_1 + k_2$ $|\boldsymbol{p}_{eq}| = |\omega_1 - \omega_2|$ $-ik_1 \cdot x$ $|g\rangle$ Momentum conservation $\gamma_1(k_1) + \gamma_2(k_2) + |g\rangle \to |e\rangle \to |g\rangle + \gamma(k) + \nu_i(p)\bar{\nu}_i(p')$ $\sum e^{i(\boldsymbol{p}_{eg}-\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{p'})\cdot\boldsymbol{x}_a} \propto \delta^3(\boldsymbol{p}_{eg}-\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{p'})$ $p_{eg} \sim {\sf mom.}$ of parent particle $woheadrightarrow {\sf boosted}$ RENP

Kinematics of the boosted RENP

4-momentum of parent particle: $(P^{\mu}) = (E_{eg}, p_{eg})$ Invariant mass: $P^2 = E_{eg}^2 - p_{eg}^2 \le E_{eg}^2$ smaller energy scale

cf. no boost case: $\omega_{ij} = \frac{E_{eg}}{2} - \frac{(m_i + m_j)^2}{2E_{eg}}$

Dirac-Majorana difference, Majorana phases Spectral rate

 $\Gamma(E_{\gamma}) = \text{Dirac part} + \text{Majorana interference} \\ \propto \text{Re}(U_{ei}^*U_{ej} - \delta_{ij}/2)^2 m_i m_j$

$\begin{aligned} \text{Majorana phases} \\ & \text{Re}(U_{e1}^*U_{e2})^2 = c_{12}^2 s_{12}^2 c_{13}^4 \cos 2\alpha \simeq 0.20 \cos 2\alpha \\ & \text{Re}(U_{e1}^*U_{e3})^2 = c_{12}^2 c_{13}^2 s_{13}^2 \cos 2(\beta - \delta) \simeq 0.015 \cos 2(\beta - \delta) \\ & \text{Re}(U_{e2}^*U_{e3})^2 = s_{12}^2 c_{13}^2 s_{13}^2 \cos 2(\beta - \delta - \alpha) \\ & \simeq 0.0065 \cos 2(\beta - \delta - \alpha) \end{aligned}$

sensitive to α

Minoru TANAKA

Figure of merit Power of Dirac-Majorana distinction relative enhancement of χ^2

 $\chi^2 = 1 \text{ (no boost)} \implies \sim 1000 \text{ (optimal boost)}$

SUMMARY

Neutrino Physics with Atoms/Molecules

- RENP spectra are sensitive to unknown neutrino parameters.
 - Absolute mass, NO or IO, Dirac or Majorana, CP
- ***** ISP makes RENP more powerful, boosted RENP.
- $x \approx RENP$ spectra are sensitive to the CNB.
- Background-free RENP M.Yoshimura, N. Sasao, M.T. PTEP(2015)053B06; arXiv:1501.05713
 - Waveguide with photonic crystals

M.T., K.Tsumura, N. Sasao, M.Yoshimura, PTEP(2017)043B03; arXiv:1612.02423

Macrocoherent rate amplification is essential. Demonstrated by a QED process, PSR.

A new approach to neutrino physics