電磁気学1演義第10回アドバンストクラス追加問題

(中性の) 原子に電場 (外場) E_{ex} をかけると, E_{ex} に比例した電気双極子 $p=\alpha E_{\text{ex}}$ が生じる場合を考える。(第9回アドバンスト問題を参照。)

1. 外場とそれにより生じた電気双極子との相互作用エネルギーが

$$U = -\frac{1}{2}\alpha \mathbf{E}_{\mathrm{ex}}^2$$

であることを示せ. (ヒント: 外場を 0 から徐々に大きくしていく際のエネルギーの変化を考える.)

- 2. 外場として、平面波 $E(z,t) = E_0 \exp i(kz \omega t)$ を鏡で反射させて作る定在波、 $E_{\rm ex}(z,t) = E(z,t) + E(-z,t)$ を考える。(E_0 は実定数ベクトル。) 電場の 2 乗の時間平均を求め、ポテンシャル U の時間平均の概形を示せ、ポテンシャルの周期を波長 $\lambda = 2\pi/k$ を用いて表すこと。($\alpha > 0$ とする。)
- 3. $\alpha>0$ の場合,定在波の腹がポテンシャルの極小となるので,原子をそこにトラップすることができる。 $\alpha/(4\pi\varepsilon_0)=200a_0^3(a_0$ はボーア半径.第 9 回アドバンスト問題参照.) として,元の平面波のエネルギーフラックスが $1\times 10^8~{\rm W/m^2}$ の場合のポテンシャルの深さを求め,温度に換算せよ.(有効数字 1 桁. $E_{\rm RMS}^2=E_0^2/2$ に注意して,第 7 回アドバンスト問題の結果を用いるとよい.)

レーザー光を3方向から照射して3次元の定在波を作れば,3次元の光格子を作ることができ、そこに冷却した原子を配置することができる。このような状態は、原子時計よりも高精度の光格子時計や、量子シミュレーションに用いられている。