The Most Wanted Higgs Particle

Yutaka Hosotani, Osaka University

The 5th COE International Symposium, Tohoku University 14 - 16 February 2007

"many arbitrary parameters"

Look for

Hidden principle New physics

- SUSY
- Little Higgs
- Higgsless
- Gauge-Higgs unification

Y. Hosotani, Tohoku COE Symposium, February 2007 - 8

in EW interactions

(4) Chiral fermions $On M^4 \times S^1 \quad theory is vector like.$ $On M^4 \times (S^1/Z_2) \quad theory naturally becomes chiral.$ $SU(3) \qquad \left(\begin{pmatrix} \nu_L & \tilde{\nu}_R \\ e_L & \tilde{e}_R \\ \tilde{e}_L & e_R \end{pmatrix} (\tilde{\nu}_L & \nu_R) \\ \tilde{e}_L & e_R \end{pmatrix} (\tilde{\nu}_L & \nu_R) \\$ $SO(5) \times U(1) \qquad \left(\begin{pmatrix} u_L & \tilde{u}_R \\ \tilde{u}_L & \tilde{u}_R \\ \tilde{u}_L & u_R \\ \tilde{d}_L & d_R \end{pmatrix} \right)$

Y. Hosotani, Tohoku COE Symposium, February 2007 - 13

	WW	Z coupli	ng		
	$g_{WWZ} =$	$g_5 \int \frac{dz}{kz} \left[ilde{h}_0^2 \right]$	$B_0^L \Big\{ ig(ilde{h}_0^{+_L}ig)^2$	$+rac{1}{2} (ilde{h}_0^{\hat{+}})^2$	2
		$+\tilde{h}$	${}_{0}^{3_{R}}\Big\{ig(ilde{h}_{0}^{+_{R}}ig)^{2}$	$\hat{h}^2+rac{1}{2}(ilde{h}_0^{\hat{+}})$	$\left. {}^{2} ight\} + ilde{h}_{0}^{\hat{3}} ilde{h}_{0}^{\hat{+}} \Big(ilde{h}_{0}^{+_{L}} + ilde{h}_{0}^{+_{R}} \Big) \Big]$
			gwwz 🗅	$\leq g\cos\theta$	W
	$ heta_H$	$\pi/10$	$\pi/4$	$\pi/2$	Almost universal in RS
	$k\pi R = 35$	0.9999987	0.999964	0.99985	
	0.35	0.9994990	0.979458	0.83378	
L	4				Deviation in flat space
				Y.	Hosotani, Tohoku COE Symposium, February 2007 - 21

	Flat v.s. Wa	arped
	for typical $ heta$) _H
	S^1/Z_2	RS
m_H	$\sim 10~{ m GeV}$	$140\sim 280~{ m GeV}$
$\sin^2 heta_W$	X	OK
m_F	fine tuning	natural hierarchy
WWZ	X	ОК

WWH & ZZH
couplingHWWH
$$\lambda_{WWH}$$
Z
 λ_{ZZH} $\lambda_{WWH} = g_5 k \int \frac{dz}{z} \tilde{f}_0^{1/2} \{\tilde{h}_0^{1/2} \partial_z (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) - \partial_z \tilde{h}_0^{1/2} (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) \}$ $\lambda_{WWH} = g_5 k \int \frac{dz}{z} \tilde{f}_0^{1/2} \{\tilde{h}_0^{1/2} \partial_z (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) - \partial_z \tilde{h}_0^{1/2} (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) - \partial_z \tilde{h}_0^{1/2} (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) \}$ $\lambda_{WWH} = g_5 k \int \frac{dz}{z} \tilde{f}_0^{1/2} \{\tilde{h}_0^{1/2} \partial_z (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) - \partial_z \tilde{h}_0^{1/2} (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) - \partial_z \tilde{h}_0^{1/2} (\tilde{h}_0^{+/2} - \tilde{h}_0^{+/2}) + \partial_z \tilde{h}_0^{1/2} (\tilde{h}_0^{-/2} - \tilde{h}_0^{-/2}) + \partial_z$

Predictions o	f Gauge-Higgs Unification
Find deviat	ion from the Standard Model
m_H	$140\sim 280~{ m GeV}$
WWH ZZH	suppressed by $\cos \theta_H$
WWHH ZZHH	suppressed by $1 - \frac{2}{3}\sin^2\theta_H$
Yukawa $/m_F$	suppressed by ····
WWZ WWWW	almost universal

